118,540 research outputs found

    Supersymmetric SO(10) Grand Unification at the LHC and Beyond

    Get PDF
    We study models of supersymmetric grand unification based on the SO(10) gauge group. We investigate scenarios of non-universal gaugino masses including models containing a mixture of two representations of hidden sector chiral superfields. We analyse the effect of excluding mu from the fine-tuning measure, and confront the results with low energy constraints, including the Higgs boson mass, dark matter relic density and supersymmetry bounds. We also determine high scale Yukawa coupling ratios and confront the results with theoretical predictions. Finally, we present two additional benchmarks that should be explored at the LHC and future colliders.Comment: Published versio

    The design/analysis of flows through turbomachinery: A viscous/inviscid approach

    Get PDF
    The development of a design/analysis flow solver at NASA Lewis Research Center is discussed. The solver is axisymmetric and can be run inviscidly with assumed or calculated blockages, or with the viscous terms computed. The blade forces for each blade row are computed from blade-to-blade solutions, correlated data or force model, or from a full three dimensional solution. Codes currently under development can be separated into three distinct elements: the turbomachinery interactive grid generator energy distribution restart code (TIGGERC), the interactive blade element geometry generator (IBEGG), and the viscous/inviscid multi-blade-row average passage flow solver (VIADAC). Several experimental test cases were run to validate the VIADAC code. The tests, representative of typical axial turbomachinery duct axisymmetric wind tunnel body problems, were conducted on an SR7 Spinner axisymmetric body, a NASA Rotor 67 Fan test bed, and a transonic boatail body. The results show the computations to be in good agreement with test data

    Conditions driving chemical freeze-out

    Full text link
    We propose the entropy density as the thermodynamic condition driving best the chemical freeze-out in heavy-ion collisions. Taking its value from lattice calculations at zero chemical potential, we find that it is excellent in reproducing the experimentally estimated freeze-out parameters. The two characteristic endpoints in the freeze-out diagram are reproduced as well.Comment: 8 pages, 5 eps figure

    CRRES: Combined Release and Radiation Effects Satellite Program Summary

    Get PDF
    The experiments that comprise the Combined Release and Radiation Effects Satellite Program (CRRES) (Apr. 1990 - Jul. 1992) are presented. The experiments are as follows: PEGSAT; El Coqui; the Kwajalein Campaign; and experiments G1 - G14

    The influence of strange quarks on QCD phase diagram and chemical freeze-out: Results from the hadron resonance gas model

    Full text link
    We confront the lattice results on QCD phase diagram for two and three flavors with the hadron resonance gas model. Taking into account the truncations in the Taylor-expansion of energy density Ďľ\epsilon done on the lattice at finite chemical potential Îź\mu, we find that the hadron resonance gas model under the condition of constant Ďľ\epsilon describes very well the lattice phase diagram. We also calculate the chemical freeze-out curve according to the entropy density ss. The ss-values are taken from lattice QCD simulations with two and three flavors. We find that this condition is excellent in reproducing the experimentally estimated parameters of the chemical freeze-out.Comment: 5 pages, 3 figures and 1 table Talk given at VIIIth international conference on ''Strangeness in Quark Matter'' (SQM 2004), Cape Town, South Africa, Sep. 15-20 200

    Inefficiency

    Get PDF
    We introduce an ordinal model of efficiency measurement. Our primitive is a notion of efficiency that is comparative, but not cardinal or absolute. In this framework, we postulate axioms that we believe an ordinal efficiency measure should satisfy. Primary among these are choice consistency and planning consistency, which guide the measurement of efficiency in a firm with access to multiple technologies. Other axioms include symmetry, which states that the names of commodities do not matter, scale-invariance, which says that units of measurement of commodities does not matter, and strong monotonicity, which states that efficiency should decrease if the inputs and outputs remain static when the technology becomes unambiguously more efficient. These axioms characterize a unique ordinal efficiency measure which is represented by the coefficient of resource utilization. By replacing symmetry (the weakest of our axioms) with a very mild continuity condition, we obtain a family of path-based measures.Efficiency Measurement, Coefficient of Resource Utilization, Ordinal, Choice Consistency, Planning Consistency, Path-based
    • …
    corecore